瓜皮网首页 收藏本站 分享生活的乐趣
联系我们 手机版 分享

扫码订阅

首页 > 趣闻 > 正文

荡气回肠商业史,光刻机之战

2019-7-7 11:00 热度: 844 责编:一朵梨花压海棠

荡气回肠商业史,光刻机之战

航空发动机一直被誉为人类顶尖工业皇冠上的明珠。但最近十年,不断挑战物理学极限的半导体光刻机,大有挑战明珠之王的趋势。

航发是在极端高温高压下挑战材料和能量密度的极限,而光刻是在比头发丝还细千倍的地方挑战激光波长和量子隧穿的极限。

更难得的是,和低可靠性的航天高科技不同,航发和光刻的可靠性也是人类骄傲之花:前者保证了每天十万架飞机在天空安全翱翔,后者在全球工厂每秒钟刻出上千亿个晶体管分毫不差。

引子

2000年,成立15年当时排名世界第二的荷兰ASML(阿斯麦)公司已经成功占领韩国和台湾市场,但还在琢磨怎么卖光刻机给那时芯片的绝对霸主英特尔(Intel)。

缺乏新一代157nm激光需要配置的反折射镜头技术也是让ASML焦虑的地方。同时,在美国能源部和几大芯片巨头合建的EUV光刻联盟里,ASML还只是个小配角。

这时下一代光刻技术发展会怎样,整个半导体届没有人知道。

在转折关头,ASML决定另辟蹊径,报价16亿美元收购市值只有10亿的硅谷集团(SVG)。曾经辉煌的SVG当时在光刻机的市场份额只有不到8%,年营业额只有2.7亿美元,而且193nm产品水平还远不如ASML。所以华尔街认为ASML买贵了,ASML股价当天暴跌7.5%。

然而从后来的结果看,ASML等于花钱买了光刻机行业最值钱的门票:英特尔的vendor code,同时摇晃了尼康(Nikon)的支柱。此外,SVG拥有最成熟的157nm光学技术,等于ASML买了一个技术双保险,这点后面会再详述。

不过,别以为西方人都是一家子。这次收购仍遭到美国政府和商会的阻挠,美国国防部审查说ASML董事长在一个曾经违反禁令偷偷卖夜视镜给伊拉克的荷兰公司当过董事。

中国公司的老对手美国外国投资委员会最终在收购协议上加了一堆条件,其中包括不许收购SVG负责打磨镜片的子公司Tinsley,以及保证各种技术和人才留在美国。

这些条件反而让ASML顺理成章地成为了半个美国公司,享受到美国强劲的基础科学带来的巨大好处,为多年后在EUV一支独秀做了有力的铺垫。

早期,60~70年代

光刻机的原理其实像幻灯机一样简单,就是把光通过带电路图的掩膜(Mask,后来也叫光罩)投影到涂有光敏胶的晶圆上。早期60年代的光刻,掩膜版是1:1尺寸紧贴在晶圆片上,而那时晶圆也只有1英寸大小。

因此,光刻那时并不是高科技,半导体公司通常自己设计工装和工具,比如英特尔开始是买16毫米摄像机镜头拆了用。只有GCA、K&S和Kasper等很少几家公司有做过一点点相关设备。

60年代末,日本的尼康和佳能开始进入这个领域,毕竟当时的光刻不比照相机复杂。

70年代初,光刻机技术更多集中在如何保证十个甚至更多个掩膜版精准地套刻在一起。Kasper仪器公司首先推出了接触式对齐机台并领先了几年,Cobilt公司做出了自动生产线,但接触式机台后来被接近式机台所淘汰,因为掩膜和光刻胶多次碰到一起太容易污染了。

1973年,拿到美国军方投资的Perkin Elmer公司推出了投影式光刻系统,搭配正性光刻胶非常好用而且良率颇高,因此迅速占领了市场。

1978年,GCA推出真正现代意义的自动化步进式光刻机(Stepper),分辨率比投影式高5倍达到1微米。这个怪怪的名字来自于照相术语Step and Repeat,这台机器通俗点说把透过掩膜的大约一平方厘米的一束光照在晶圆上,曝光完一块挪个位置再刻下一块。由于刚开始Stepper生产效率相对不高,Perkin Elmer在后面很长一段时间仍处于主导地位。

80年代,群雄争霸

光刻机是个小市场,一年卖几十台的就算大厂了。因为半导体厂商就那么多,一台机器又能用好多年。这导致你的机器落后一点,就没人愿意买了。技术领先是夺取市场的关键,赢家通吃。

80年代一开始,GCA的Stepper还稍微领先,但很快尼康发售了自己首台商用Stepper NSR-1010G,拥有更先进的光学系统极大提高了产能。两家一起挤压了其它厂商的份额,尤其是Perkin Elmer的投影式光刻。P&E的市场份额从80年超过3成快速跌到84年不到5%。

看过我写的《内存的故事》的朋友都知道,80年代是日本半导体最风光的时候,本土几乎每家大公司大财阀都进入了半导体业。这给尼康和佳能双雄带来巨大的后盾,并开始反攻美国市场。

由于GCA的镜片组来自蔡司,不像尼康自己拥有镜头技术,合作的问题使得GCA产品更新方面一直落后了半拍。1982年,尼康在硅谷设立尼康精机,开始从GCA手里夺下一个接一个大客户:IBM、Intel、TI、AMD等。

到了1984年,尼康已经和GCA平起平坐,各享三成市占率。Ultratech占约一成,Eaton、P&E、佳能、日立等剩下几家每家都不到5%。

为什么我们要特地看1984年呢?

首先我们致敬一下苹果,震撼世界的广告《1984》发布了第一代Mac(我现在打字电脑的老祖宗)。然后,请出我们故事的主角:ASML。

ASML被广为传播成是飞利浦分离的出来的,虽然不能说不对,但是和大家想象的那样子还是不同的。

飞利浦在实验室里研发出stepper的原型,但是不够成熟。因为光刻市场太小,飞利浦也不能确认它是否有商业价值,去美国和P&E、GCA、Cobilt、IBM等谈了一圈没人愿意合作。

有家荷兰小公司叫ASM International的老板Arthur Del Prado听说了有这么回事,主动要求合作。但这家代理出身的公司只有半导体前后道的经验,对光刻其实不太懂,等于算半个天使投资加半个分销商。

飞利浦犹豫了一年时间,最后勉强同意了设立50:50的合资公司。1984年4月1日ASML成立的时候,只有31名员工,在飞利浦大厦外面的木板简易房里工作。

荡气回肠商业史,光刻机之战

ASML最早成立时的简易平房,后面的玻璃大厦是飞利浦。Credit:ASML

ASML在头一年只卖出一台stepper,第二年卖出四台。第一代产品不够成熟,但是背靠飞利浦大树的各种资源和容忍让它生存了下来。

ASML在1985年和蔡司(Zeiss)合作改进光学系统,终于在1986年推出非常棒的第二代产品PAS-2500,并第一次卖到美国给当时的创业公司Cypress,今天的Nor Flash巨头。

有意思的是,1986年半导体市场大滑坡(比如光三星半导体就亏了3亿美元),导致美国一帮光刻机厂商都碰到严重的财务问题。ASML还小,所以损失不大,还可以按既有计划开发新产品。同期,GCA和P&E的新产品开发都停滞了下来。

1988年GCA资金严重匮乏被General Signal收购,又过了几年GCA找不到买主被关闭。General Signal旗下另外一家Ultratech最终被MBO,但是规模也不大了。1990年,P&E光刻部也支撑不下去被卖给SVG。

1980年还占据大半壁江山的美国三雄,到80年代末地位完全被日本双雄取代。这时ASML还只有大约10%的市场占有率。

波长的竞争

忽略掉美国被边缘化的SVG、Ultratech等公司,90年代一直到现在的格局,一直是ASML和尼康的竞争,佳能在旁边看热闹。

所以我们要开始讲一点点技术了。

半导体领域的原生驱动力是摩尔定律。摩尔定律其实应该被叫做摩尔预言,这个预言中间还改过一次。戈登摩尔博士1965年最早的预言是集成电路密度每年翻倍,而1975年他自己改成每两年翻倍。

有人说,这是人类历史上最伟大的“自我实现的预言”,因为英特尔就是照着这个预言一路狂奔数十年,直到光刻技术被卡在193nm上十多年变成网友说的“牙膏厂”。

为了实现摩尔定律,光刻技术就需要每两年把曝光关键尺寸(CD)降低30%~50%。根据瑞利公式:CD=k1*(λ/NA),我们能做的就是降低波长λ,提高镜头的数值孔径NA,降低综合因素k1。

搞更短的波长是最直接的手段。90年代前半期,光刻开始使用波长365nm i-line,后半期开始使用248nm的KrF激光。激光的可用波长就那么几个,00年代光刻开始使用193nm波长的DUV激光,这就是著名的ArF准分子激光,包括近视眼手术在内的多种应用都应用这种激光,相关激光发生器和光学镜片等都比较成熟。

但谁也没想到,光刻光源被卡在193nm无法进步长达20年。直到今天,我们用的所有手机电脑主芯片仍旧是193nm光源光刻出来的。

90年代末,科学家和产业界提出了各种超越193nm的方案,其中包括157nm F2激光,电子束投射(EPL),离子投射(IPL)、EUV(13.5nm)和X光,并形成了以下几大阵营:

157nm F2:每家都研究,但SVG和尼康离产品化最近。

157nm光会被现有193nm机器用的镜片吸收,光刻胶也要重新研制,所以改造难度极大,而对193nm的波长进步只有不到25%,研发投入产出比太低。ASML收购SVG后获取了反射技术,2003年终于出品了157nm机器,但错过时间窗口完败于低成本的浸入式193nm。

13.5nm EUV LLC:英特尔,AMD,摩托罗拉和美国能源部。ASML、英飞凌和Micron后来加入。

关于EUV,我放到后面再说。

1nm 接近式X光:日本阵营(ASET, Mitsubishi, NEC, Toshiba, NTT)和 IBM。

这算是个浪漫阵营吧,大家就没想过产业化的事。

0.004nm EBDW或EPL:朗讯Bell实验室,IBM,尼康。ASML和应用材料被邀请加入后又率先退出。

这是尼康和ASML对决的选择,尼康试图直接跨越到未来技术击败ASML,但可惜这个决战应该发生在2020年而不是2005年,尼康没有选错技术但是选错了时间。尼康最重要的技术盟友IBM在2001年也分心加入了EUV联盟。

0.00005nm IPL:英飞凌、欧盟。ASML和莱卡等公司也有参与。

离子光刻从波长来看是最浪漫的,然而光刻分辨率不光由波长决定,还要看NA。人类现有科技可用离子光刻的光学系统NA是0.00001,比193nm的NA=0.5~1.5刚好差10万倍,优势被抵消了。

以上所有努力,几乎全部失败了。

它们败给了一个工程上最简单的解决办法,在晶圆光刻胶上方加1mm厚的水。水可以把193nm的光波长折射成134nm。

浸入式光刻成功翻越了157nm大关,直接做到半周期65nm。加上后来不断改进的高NA镜头、多光罩、FinFET、Pitch-split、波段灵敏的光刻胶等技术,浸入式193nm光刻机一直做到今天的7nm(苹果A12和华为麒麟980)。

2002年台积电的林本坚博士在一次研讨会上提出了浸入式193nm的方案,随后ASML在一年的时间内就开发出样机,充分证明了该方案的工程友好性。

随后,台积电也是第一家实现浸入式量产的公司,随后终于追上之前制程技术遥遥领先的英特尔,林博士因此获得了崇高的荣誉和各种奖项。

MIT的林肯实验室似乎不服气,他们认为自己在2001年就提出了这个浸入式方案。ASML似乎也没有在任何书面说明自己开发是受林博士启发。

其实油浸镜头改变折射率的方式由来已久,产业界争论是谁的想法在先从来不重要,行胜于言。林博士的贡献是台积电和ASML通力合作把想法变成了现实。

日荷争霸

在ASML推出浸入式193nm产品的前后脚,尼康也宣布自己的157nm产品以及EPL产品样机完成。然而,浸入式属于小改进大效果,产品成熟度非常高,所以几乎没有人去订尼康的新品。尼康被迫随后也宣布去做浸入式光刻机。

之前我们提到光刻领域是赢家通吃,新产品总是需要至少1~3年时间由前后道多家厂商通力磨合。别人比你早量产就比你多了时间去改善问题和提高良率。

光刻机就像印钞机,材料成本可以忽略不计,而时间就像金子一样珍贵。

半导体厂商更愿意去买成熟的ASML产品,不想去给尼康当白鼠。

这导致后面尼康的大溃败。尼康在2000年还是老大,但到了2009年ASML已经市占率近7成遥遥领先。尼康新产品的不成熟,也间接关联了大量使用其设备的日本半导体厂商的集体衰败。

佳能在光刻领域一直没争过老大。当年它的数码相机称霸世界利润很好,对一年销量只有百来台的光刻机重视不够。

佳能的思路是一款产品要卖很久,他们一看193nm尼康和ASML打得太厉害就直接撤了。直到现在佳能还在卖350nm和248nm的产品,给液晶面板以及模拟器件厂商供货。

尼康在浸入式一战败下来就彻底没有还手之力了,因为接下来EUV的开发需要投入巨资而且前景未卜,英特尔倒向ASML使得尼康失去了挑战摩尔定律的勇气。

EUV光刻机

接下来,我们再说说EUV。这个产品其实是ASML在没有竞争对手的情况下研发的,而且做了十多年到今天也没有量产。

那它背后的驱动力是什么呢?我看了一些文献,英特尔绝对是最坚定的支持者,因为它的使命之一就是让摩尔定律走下去。

早在1997年,英特尔看到挑战193nm的巨大难度,决心集合人类精英一起愚公移山,有点流浪地球的意思。他们说服了美国对高科技最开明的克林顿内阁,以公司形式发起了EUV LLC这样的一个合作组织。

这个组织由英特尔和美国能源部牵头,集合了当时还如日中天的摩托罗拉以及AMD,以及享有盛誉的美国三大国家实验室:劳伦斯利弗莫尔实验室,劳伦斯伯克利实验室和桑迪亚国家实验室,投资两亿美元集合几百位顶级科学家,从理论上验证EUV可能存在的技术问题。

英特尔还力邀ASML和尼康加入EUV LLC,因为当时美国光刻已经不太行了。但此举受到美国政府的阻挠,因为他们舍不得让外国公司分享美国最前沿技术。

最终结果是尼康被排除在外,ASML做了一堆对美国贡献的许诺后被允许加入。另外一家例外的非美国公司是英飞凌,它被允许和Micron一起加入EUV LLC。

我们回看当年各种跨越193nm的技术方案,很多公司是左右下注的,只有英特尔坚定地选了EUV,而且让它最终成为了现实。

看当年的一些回忆录,说英特尔自己并未派出多少工程师,但是列了几百项难题一直拿着小鞭子督促那些科学家不停地努力。

EUV算是软X光,穿透物体时散射吸收都非常厉害,这使得光刻机需要非常非常强的光源,这个难度是巨大的。连空气都能吸收EUV,所以机器内部还得做成真空的。

传统光刻用的很多透镜因为会吸收X光要换成反射镜,据说193nm的最新光刻机里镜头加起来就有一吨重,而这些技术都用不上了。

由于光刻精度是几纳米,EUV对光的集中度要求极高,相当于拿个手电照到月球光斑不超过一枚硬币。反射要求的镜子要求长30cm起伏不到0.3nm,这相当于是北京到上海做根铁轨起伏不超过1毫米。

所以,EUV不仅是顶级科学的研究,也是顶级精密制造的学问。

EUV的小镜子由德国蔡司生产,ASML还因此特地购买了Carl Zeiss SMT公司24.5%的股份。

1997年~2003年,6年间EUV LLC的科学家发表了几百篇论文,验证了EUV光刻机的可行性。然后EUV LLC联盟解散。

接下来留给ASML一个问题,是做还是不做呢?

好在ASML从来没有犹豫过。2006年它推出原型,2007年建造了10000平米的超级无尘室,等着接待2010年诞生的第一台研发用样机:NXE3100。

2012年,ASML请英特尔、三星和台积电入股自己,希望大家共同承担这个人类的伟大工程,因为研发投入需要每年10亿欧元。

2015年,可量产的样机发布。虽然售价高达1.2亿美元一台,但还是收到雪片一样的订单。排队等交货,都要等好几年。

一台EUV光刻机重达180吨,超过10万个零件,需要40个集装箱运输,安装调试都要超过一年时间。

明年,我们就能买到EUV加工出来的芯片做的手机了。

荡气回肠商业史,光刻机之战

EUV光刻机 Credit:ASML

后记

相信在未来,人类一定可以突破光学光刻机的极限,无论用电子离子还是最终放弃硅基。但是,就在刚写完文章的现在,我只想衷心为这些伟大的公司喝彩。

需要强调的是,在半导体制造中,光刻只是其中的一个环节,另外还有无数先进科技用于前后道工艺。

正是因为他们不屈不挠的努力,才使得我们在这个一切由芯片驱动的伟大时代,享受着各种手机、电脑、家电、汽车飞机和互联网带给我们的精彩生活。

……………………………………………………第二部分………………………………………………………………

《光刻机之战》发表后,得到超过60家科技和财经类公众号转载,“光刻机”这个对大众奇怪又陌生的词,通过贸易战和华为事件被放大了很多倍,让大家知道了中国制造最大的短板是什么。

在知乎上,出现了氢弹和光刻机做哪个更难的热烈讨论。

也有读者问,凭举国之力,我们是不是花十年可以做出先进光刻机来呢?

为什么一台最新的光刻机可以卖到超过一亿美金?

我很有幸得到荷兰作者René Raaijmakers的支持,协助翻译一本讲述光刻机霸主ASML(阿斯麦)发展史的书:ASML's Architects。

作者René酝酿这本书超过十五年,而写作花了整整七年。

荡气回肠商业史,光刻机之战

为什么写此书这么费时间呢?因为没有类似的书可以抄,ASML一直是个低调不爱宣传的公司。

全书翻译成中文约五十万字,和字典一样厚,每个事件都来自于当事人访谈和企业文档。所以95%以上的内容,对中国读者来说都是从没听过的新鲜内容。

René最终给出了问题的答案,那些了不起的人们才是光刻领域的贡献者,我们最应该歌颂的是勇于挑战的科学家和工程师们。

让我感到羞愧的是,我在之前文章中把所有成就都简单归功于公司头上。

接下来聊几个书中小花絮。

飞利浦和ASM合资时还是挺欺负人的。

ASM老板Arthur del Prado出生于当时还是荷兰殖民地的印尼,父亲有犹太血统。二战时十来岁的他被关到印尼的集中营,还好这不是纳粹管理的那种。

早期飞利浦研发半导体的负责人Hajo Meyer更是传奇,作为犹太人被从荷兰赶到奥斯维辛集中营,因为德国人需要他维修机械逃过一劫。第二次逃过毒气室是趁苏军到来被赶到河边逃生。他回忆说,那次差点变成化肥或者鞋油。

战后的规矩是难民各回原籍,像铅笔一样瘦的Meyer步行从波兰走回荷兰,然后去上大学学习。

太平洋战争结束后,Del Prado也回了荷兰上大学并后来考取了哈佛商学院。二十六岁时,他到硅谷旅行,见识到刚刚起步的芯片行业,便被深深吸引了。

毕业后,Del Prado带着一小片晶圆和500美元回到荷兰,创建了“先进半导体材料”公司,ASM就是公司的缩写。

一个人有多大的见识,决定了他能做多大的事。

Del Prado的公司很成功,他准确预判了芯片业的伟大前景,并梦想打造欧洲的硅谷,但是傲慢的飞利浦却多年都不理他。Del Prado在报纸上撰文说,他在美国可以很容易约到IBM或HP谈合作,但在家乡却很难约到本土巨头。

直到1983年ASM在纳斯达克上市两年后,飞利浦的一位高管读报时才意识到这家伙还是有点钱可以聊聊的。

虽然Del Prado苦苦追求,但双方合作谈了一年多,飞利浦还是觉得ASM太小玩不了光刻机,并不看好其未来。所以在双方决定合资公司(即ASML)各出210万美元时,飞利浦有点狡猾地把16台还没做好的库存PAS2000光刻机折价180万美元算出资。

Del Prado当时可能不很清楚,这16台PAS2000因为采用油压传动台,配这台机器还需要比机器更大的动力单元而且有震动,很难找到客户买。

PAS2000的光学部件来自巴黎的CERCO,虽然这家公司很强,但是做到大规模集成电路精度就不行了。而当时ASML还没找蔡司合作,蔡司根本就看不上这个小生意。

ASML是1984年愚人节成立的,和联想同岁。

那时正是日本半导体如日中天的时代。NEC和东芝那时的江湖地位就像今天的英特尔和三星。日本生产的DRAM良率远远高于美国,逼得两年后英特尔壮士断腕。

日本半导体的成功背后,是尼康和佳能两大光学巨头的光刻,以及东京电子、日立、迪恩士、住友、东横等一系列配套厂商的支持。

缺钱缺光学器件的ASML,市场占有率为零的ASML,拿什么去竞争呢?

首任ASML的CEO Gjalt Smit到美国开展会时向应用材料的CEO Jim Morgan请教。应用材料公司当时规模还不大,是ASM的晶圆前后道工艺的直接竞争对手。Smit是托了飞利浦的人介绍,所以Morgan就坦诚发表了意见。

Morgan说,他肯定不会去碰光刻,光刻根本不能说是一道工序,而是要有能力驾驭机器和光。他补充说,半导体厂一般只会从一家买光刻而且要董事会级别才能决定。

一台机器都没卖出去的Smit回国时心情十分沉重(with a heavy heart)。

光刻机的原理非常简单,就是用光把图案投射到硅片上。然而实现上有两个难点,一个是如何让图案尽可能地小,另一个是怎么让生产效率最高。

图案要多小呢?最新技术是一平方毫米(比芝麻还小)里面有一亿个晶体管。

生产效率要多高呢?目前的核心技术是一小时出产近300片300mm晶圆,每片晶圆上千个芯片。ASML的先进光刻机7x24小时工作,全年停机时间不超过3%。

光头一次只能曝光26x33mm橡皮那么大的区域,一块晶圆曝光一遍至少要移动好几百次。你可以想象光刻机台的移动速度有多快。更何况每次移动的定位要精确到几十纳米,就是头发丝的几万分之一。

ASML的前辈们从公司一开始就决定好了主攻方向,那就是“定位精准”和“唯快不破”,这个理念称为后来成功的基石。

让精密动作到令人发指的机器7x24小时稳定工作,是工程学上的巨大挑战。

我们经常看到新闻,说某科研单位实现了多少nm光刻,这时你要理解从实验室刻出两条线到工厂7x24之间是有天堑的。

ASML研发前身飞利浦物理实验室(NATLAB)的特色就是,不在乎成本但是要做到最好。这个伟大的实验室是CD光盘的诞生地,也是NXP(恩智浦)的诞生地。

所以ASML光刻机的设计原则也是,尽量不考虑成本和售价,但是要做到最精密和最可靠。

ASML在90年代中期的老机型PAS5500,现在还在官网翻新出售。这足可见其可靠性之高。

这刚好契合了半导体厂商的需求,投资以数十亿美元计的工厂,最怕的就是停线。设备贵一倍都没关系,只要能不停运转,就可以源源不断地印钱。

作者René也把光刻机称为License to Print Money。

书中介绍日本竞争对手时,给了我一种有趣的联想(不是结论)。

日本半导体衰落的原因,并不像那些阴谋论公众号说的是贸易战。

它和1985年广场协议以及日美半导体协议没有直接关系。因为到了1990年NEC、东芝和日立还是半导体世界前三名,而且营业额都翻番。

1994年ASML的市场份额只有18%,但是设计超前的8英寸PAS5500以及1995年的IPO给ASML插上了翅膀。率先采用这个机器的台积电、三星和现代(后来的Hynix)很快决定几乎全部光刻改用ASML。

而1995年东芝、西门子(后来的英飞凌)和IBM联盟一起开发256Mb Trench DRAM。他们当时考虑到和佳能的合作,开始没选择ASML。

巧合的是,坚持尼康佳能的日系半导体厂商真正开始了长达十年的衰败,而押宝ASML的三大东亚厂商迅速崛起直到今天称霸。

荡气回肠商业史,光刻机之战

神奇的分水岭:PAS-5500, 照片来自ASML官网

我在国内联系了一些出版社希望出版ASML's Architects,但很不幸多数出版社并不认为它有商业价值,即使市面上还没有介绍这间公司的书。

一家著名大学出版社的编辑说,只写一个公司的书销路会很窄,暗示我应该写个故事拼盘。我开玩笑反驳说《腾讯传》不是卖得很好吗?他说,那不一样。

我猜他可能是对的,这种书也许就能卖个几千本,谈不上赚钱。而且现在读者更喜欢快餐读物,更关心结论;尤其希望听到马云等偶像直接告诉我们:人生成功秘诀是什么,韭菜能不能吃,贸易战能不能赢……

虽然如此,如果一本书能够吸引独立思考的年轻人或半导体从业者喜欢他的行业,有热情投身进去学习和钻研,对国家大力支持的集成电路产业还是会有莫大好处的。

你们是希望和未来。

…………………………………………第三部分………………………………………………

在80年代初,为了不被强劲发展的美日甩开距离,欧洲共同体在高科技领域推出政府资助主导的“尤里卡计划”。在这个计划框架内,有个关于集成电路的子计划叫做JESSI。

JESSI里面最重要的一个项目叫做MEGA,就是做Megabit(1Mb)的内存。看我专栏的朋友都知道,内存就是电子业的石油,因为电子产品基本都需要用到。

MEGA项目的核心主导者是飞利浦(NXP前身)和西门子(英飞凌前身)。考虑到内存业投资巨大和风险巨大,两个公司分工了一下:飞利浦负责SRAM,西门子负责DRAM。

项目正式启动是在1984年,两大巨头计划五年内各出资约15亿马克,其中两国政府资助约5亿马克,目标是在80年代末赶上日本人。

那时美元对马克大约是1:2(中国职工月工资应该不到30美元),所以这是非常大的一笔钱。

MEGA项目也有很多配套厂商,包括ASML。理论上它将从MEGA项目中获益,然而实际上如何呢?我们留到后面再说。

法国的Thomson公司找西门子想要合作做内存,而德国人似乎看不上法国人。结果Thomson去找了意大利的SGS公司,两公司当时都相对弱一些,决定抱团取暖参加JESSI。合并后的SGS-Thomson后来缩写成ST,就是著名的意法半导体(ST Microelectronics)。

因为当时电子电路数字化的潮流浩浩荡荡,日美公司都把绝大多数资源投入数字电路。制程落后的意法半导体选择了避开锋芒,在模拟和混合电路上找到了立足点,他们在低级的EPROM上也赚了不少钱。

西门子则选择了弯道超车,直接从日本东芝引进DRAM技术,顺利在1987年量产了1Mb DRAM,甚至领先了美国人。

因为这个原因,西门子直接引入了全套日本生产线,包括佳能光刻机。

ASML则欲哭无泪,原本案板上的鸭子飞了。说好了是欧洲政府补贴的项目,好处却给了日本人。

ASML当时产品还没有很好的成功案例,西门子不愿意做小白鼠也是可以理解的。

这个大生意一丢就是十来年,ASML直到英飞凌独立才开始拿回光刻机业务。

西门子MEGA项目的成功使得其内存业务蒸蒸日上二十年,直到奇梦达破产,而破产根源之一是东芝退出了Trench技术联盟。(这是一种轮回么?,详见《内存的故事》)

荡气回肠商业史,光刻机之战

西门子1Mb内存 (Photo Credit: Siemens)

好在ASML还有飞利浦这个亲爸爸。在ASML一台光刻机都卖不出去的时候,飞利浦还是率先买了几台。1987年飞利浦MEGA项目上线时,把宝都压给了ASML第三款光刻机PAS2500。

然而,SRAM的市场需求并不大,而且英特尔还把它集成到CPU里(Cache缓存)。

最终飞利浦的MEGA项目失败了。有分析师说,飞利浦SRAM的年产能足够全球用四年。

有意思的是,飞利浦MEGA的失败却酝酿着一个巨大的成功——台积电。

很多人不知道,台积电1987年诞生时是台湾工研院和飞利浦的合资公司。在台积电里,飞利浦占27.5%股份,是最大的外部股东。

飞利浦毫无保留地把MEGA生产线开放给台积电学习,然后再原封不动地把整条生产线搬到台湾给台积电。

意外的是,1988年底生产线快装好的时候,发生了一场火灾。台积电把所有被烟熏了的光刻机退回ASML,并下了个十七台新机的订单。

ASML刚好非常缺钱,这些订单在关键时刻救了急。结果为火灾买单的保险公司,等于成了ASML 1989年最大的客户。

一小时可以生产70片6英寸晶圆的PAS2500,刚好是ASML第一款真正实现高速和稳定的光刻机。

荡气回肠商业史,光刻机之战

也许真的是时势造英雄。ASML和台积电两个当时默默无闻的小公司,经过如此因缘巧合互相扶持,终成今天半导体行业的绝代双骄。

来源:微信公众号:金捷幡(ID:jin-jiefan),作者:金捷幡

特别声明:本站部分内来源于互联网与网友分享,本站只做收集与展示,相关版权归原作者所有,如有侵犯到您的权益,请联系我们删除相关内容!